Stewart Headlam Primary School

Power Maths calculation policy, KS1

The following pages show the Power Maths progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across Power Maths helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

[^0]
KEY STAGE 1

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10s and 1s to develop their calculation strategies, especially in addition and subtraction.

Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table

Addition and subtraction: Children first learn to

 connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10s, to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations. A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with 15-3 and $15-13$, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods.In Year 2, they will start to see calculations presented in a column format, although this is not expected to be formalised until KS2. We show the column method in Year 2 as an option; teachers may not wish to include it until Year 3.

Multiplication and division: Children develop an awareness of equal groups and link this with counting in equal steps, starting with 2 s , 5 s and 10s. In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.
They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation. In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations.
Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2,5 and 10 times-tables and how they are related to counting.

Fractions: In Year 1, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

Year 1			
	Concrete	Pictorial	Abstract
Year 1 Addition	Counting and adding more Children add one more person or object to a group to find one more.	Counting and adding more Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Counting and adding more Use a number line to understand how to link counting on with finding one more. One more than 6 is 7 . 7 is one more than 6 . Learn to link counting on with adding more than one. $5+3=8$
	Understanding part-part-whole relationship Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4 . The whole is 6 .	Understanding part-part-whole relationship Children draw to represent the parts and understand the relationship with the whole. The parts are 1 and 5 . The whole is 6 .	Understanding part-part-whole relationship Use a part-whole model to represent the numbers. $\begin{aligned} & 6+4=10 \\ & 6+4=10 \end{aligned}$

[^1]Knowing and finding number bonds
within 10
Break apart a group and put back together

to find and form number bonds. | Knowing and finding number bonds |
| :--- |
| within 10 |
| Use five and ten frames to represent key |
| number bonds. |
| within 10 |
| Use a part-whole model alongside other |
| representations to find number bonds. Make |
| sure to include examples where one of the |
| parts is zero. |

	Adding by counting on Children use knowledge of counting to 20 to find a total by counting on using people or objects.	Adding by counting on Children use counters to support and represent their counting on strategy.	Adding by counting on Children use number lines or number tracks to support their counting on strategy. $7+5=$ \square
	Adding the 1s Children use bead strings to recognise how to add the 1 s to find the total efficiently. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Adding the 1s Children represent calculations using ten frames to add a teen and 1 s . $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Adding the 1s Children recognise that a teen is made from a 10 and some 1 s and use their knowledge of addition within 10 to work efficiently. $3+5=8$ So, $13+5=18$
	Bridging the 10 using number bonds Children use a bead string to complete a 10 and understand how this relates to the addition. 7 add 3 makes 10 . So, 7 add 5 is 10 and 2 more.	Bridging the 10 using number bonds Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10 .	Bridging the 10 using number bonds Use a part-whole model and a number line to support the calculation.

[^2]

	Subtraction bridging 10 using number bonds For example: 12-7 Arrange objects into a 10 and some 1s, then decide on how to split the 7 into parts. 7 is 2 and 5 , so I take away the 2 and then the 5 .	Subtraction bridging 10 using number bonds Represent the use of bonds using ten frames. For 13-5, I take away 3 to make 10, then take away 2 to make 8.	Subtraction bridging 10 using number bonds Use a number line and a part-whole model to support the method.
Year 1 Multiplication	Recognising and making equal groups Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal. A B C	Recognising and making equal groups Children draw and represent equal and unequal groups.	Describe equal groups using words Three equal groups of 4 . Four equal groups of 3.
	Finding the total of equal groups by counting in $\mathbf{2 s}, 5 \mathrm{~s}$ and 10 s There are 5 pens in each pack ... 5...10...15...20...25...30...35...40...	Finding the total of equal groups by counting in $\mathbf{2 s}$, 5 s and 10 s 100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	Finding the total of equal groups by counting in $\mathbf{2 s}, 5 \mathrm{~s}$ and 10 s Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .

| Year 1 |
| :--- | :--- | :--- | :--- | :--- |
| Division |\quad| Grouping |
| :--- |
| Learn to make equal groups from a whole |
| and find how many equal groups of a |
| certain size can be made. |
| Sort a whole set people and objects into |
| equal groups. | | Grouping |
| :--- |
| Represent a whole and work out how many |
| equal groups. |

[^3]Year 2

	Concrete	Pictorial	Abstract
Year 2 Addition			
Understanding 10s and 1s	Group objects into 10s and 1s． Bundle straws to understand unitising of 10s．	Understand 10s and 1s equipment，and link with visual representations on ten frames．	Represent numbers on a place value grid， using equipment or numerals．
Adding 10s	Use known bonds and unitising to add 10s． （IIII）（III） I know that $4+3=7$ ． So， 1 know that 4 tens add 3 tens is 7 tens．	Use known bonds and unitising to add 10s． I know that $4+3=7$ ． So，I know that 4 tens add 3 tens is 7 tens．	Use known bonds and unitising to add 10s． $\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$

[^4]| Adding a
 1-digit number
 to a 2-digit
 number not
 bridging a 10 | Add the 1s to find the total. Use known bonds within 10 .
 41 is 4 tens and 1 one.
 41 add 6 ones is 4 tens and 7 ones.
 This can also be done in a place value grid. | Add the 1 s .
 34 is 3 tens and 4 ones.
 4 ones and 5 ones are 9 ones.
 The total is 3 tens and 9 ones. | | Add the 1 s .
 Understand the link between counting on and using known number facts. Children should be encouraged to use known number bonds to improve efficiency and accuracy.
 This can be represented horizontally or vertically. $34+5=39$
 or |
| :---: | :---: | :---: | :---: | :---: |
| Adding a 1-digit number to a 2-digit number bridging 10 | Complete a 10 using number bonds. $+$
 There are 4 tens and 5 ones.
 I need to add 7. I will use 5 to complete a 10, then add 2 more. | Complete a 10 using number b | onds. | Complete a 10 using number bonds. $\begin{aligned} & 7=5+2 \\ & 45+5+2=52 \end{aligned}$ |

Adding a multiple of 10 to a 2-digit number using columns	Add the 10 s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10s represented vertically. Children must understand how the method relates to unitising of 10 s and place value. $\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$
Adding two 2-digit numbers	Add the 10 s and 1 s separately. $5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	Add the 10s and 1s separately. Use a part-whole model to support. $\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \end{aligned}$ $32+11=43$	Add the 10s and the 1s separately, bridging 10 s where required. A number line can support the calculations.

[^5]| Adding two
 2-digit
 numbers using a place value grid | Add the 1 s . Then add the 10 s . | | Add the 1s. Then add the 10 s . |
| :---: | :---: | :---: | :---: |
| Adding two 2-digit numbers with exchange | Add the 1s. Exchange 10 ones for a ten. Then add the 10s. | | Add the 1s. Exchange 10 ones for a ten. Then add the 10s. |

Year 2 Subtraction			
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10 . $\otimes \otimes \not \Delta \not \subset \not \subset \varnothing \not \subset \not \subset$ 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 . $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtracting a single-digit number	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. Understand the link between counting back and subtracting the 1s using known bonds. $\begin{array}{cc} T & 0 \\ \hline 3 & 9 \\ -\quad 3 \\ \hline & 6 \\ \cline { 1 - 2 } & 6-3=6 \\ & \\ & \\ 39-3=36 \end{array}$
Subtracting a single-digit number bridging 10	Bridge 10 by using known bonds. $35-6$ I took away 5 counters, then 1 more.	Bridge 10 by using known bonds. $35-6$ First, I will subtract 5, then 1.	Bridge 10 by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$

[^6]

Subtracting a 2-digit number using place value and columns	Subtract the 1 s . Then subtract the 10 s . This may be done in or out of a place value grid. $38-16=22$	Subtract the 1 s . Then subtract the 10 s.	Using column subtraction, subtract the 1 s . Then subtract the 10s. 1 0 4 5 -1 2 3$-\begin{array}{r\|r} T & 0 \\ \hline 4 & 5 \\ 1 & 2 \\ \hline 3 & 3 \\ \hline \end{array}$
Subtracting a 2-digit number with exchange		Exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s .	Using column subtraction, exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s . $\begin{array}{r} T \\ \hline \end{array} 0$

[^7]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible fo

Year 2 Multiplication			
Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication． 3 groups of 5 chairs 15 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication．	Use a number line and write as repeated addition and as multiplication． $\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$
Using arrays to represent multiplication and support understanding	Understand the relationship between arrays，multiplication and repeated addition． 价价价价 4 groups of 5	Understand the relationship between arrays，multiplication and repeated addition． 4 groups of 5 ．．． 5 groups of 5	Understand the relationship between arrays， multiplication and repeated addition． $5 \times 5=25$
Understanding commutativity	Use arrays to visualise commutativity． I can see 6 groups of 3 ． I can see 3 groups of 6 ．	Form arrays using counters to visualise commutativity．Rotate the array to show that orientation does not change the multiplication． This is 2 groups of 6 and also 6 groups of 2 ．	Use arrays to visualise commutativity． $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$

Learning $\times 2$, $\times 5$ and $\times 10$ table facts	Develop an understanding of how to unitise groups of 2, 5 and 10 and learn corresponding times-table facts. (-) 3 groups of $10 \ldots 10,20,30$ $3 \times 10=30$	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts. ○○○○○○○○○○ OOOOOOOOOO OOOOOOOOO $\begin{aligned} & 10+10+10=30 \\ & 3 \times 10=30 \end{aligned}$	Understand how the times-tables increase and contain patterns. $\begin{aligned} & 5 \times 10=50 \\ & 6 \times 10=60 \end{aligned}$

Year 2 Division			
Sharing equally	Start with a whole and share into equal parts, one at a time. 12 shared equally between 2. They get 6 each. Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared They get 5 each. 15 shared equally between 3. They get 5 each.	Represent the objects shared into equal parts using a bar model. 20 shared into 5 equal parts. There are 4 in each part.	Use a bar model to support understanding of the division. $18 \div 2=9$

Grouping equally	Understand how to make equal groups from a whole. -oscyoy \square 30 \square \square 8 divided into 4 equal groups. There are 2 in each group.	Understand the relationship between grouping and the division statements. $12 \div 3=4$ $12 \div 4=3$ $12 \div 6=2$ $12 \div 2=6$	Understand how to relate division by grouping to repeated subtraction. There are 4 groups now. 12 divided into groups of 3 . $12 \div 3=4$ There are 4 groups.
Using known times-tables to solve divisions	Understand the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Link equal grouping with repeated subtraction and known times-table facts to support division. 40 divided by 4 is 10 . Use a bar model to support understanding of the link between times-table knowledge and division.	Relate times-table knowledge directly to division. $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ I used the IO times-table to help me. $3 \times 10=30$ I know that 3 groups of 10 makes 30, so I know that 30 divided by 10 is 3 . $3 \times 10=30 \text { so } 30 \div 10=3$

[^8]
[^0]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible fo

[^1]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible fo

[^2]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

[^3]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible fo

[^4]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only．This material is not copyright free．Pearson is not responsible for

[^5]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible fo

[^6]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

[^7]: Power Maths © Pearson 2019

[^8]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

